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Vibration phenomena in mechanical structures including conical shells are usually undesi-
rable. In order to overcome this problem, this study investigates active vibration control
of isotropic truncated conical shells containing magnetostrictive actuators. The first-order
shear deformation theory and the Hamilton principle are handled to obtain vibration equ-
ations. Moreover, a negative velocity feedback control law is used to actively suppress the
vibration. The Ritz and modified Galerkin methods are utilized to obtain results of shell
vibration. The results are validated by comparison with the results of literature and finite
element software. Finally, the effects of control gain value, magnetostrictive layers thick-
ness, isotropic layer thickness, length and semi-vertex angle of the conical shell on vibration
suppression characteristics are obtained in details.
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1. Introduction

Vibration control of structures is very important because of damaging effects of vibration to
structural systems. In recent years, several materials called smart materials have been used in
sensor/actuator applications in order to decrease and suppress vibration. Piezoelectric mate-
rials, magnetostrictive materials, electrostrictive materials, shape memory alloys and electro-
-rheological fluids are all from smart materials (Pradhan and Reddy, 2004). Magnetostrictive
materials can serve both as solid-state actuators and as magnetic field sensors (Chopra and
Sirohi, 2013). When a magnetic field is applied to these materials, randomly oriented magnetic
domains rotate to align themselves along the field (Chopra and Sirohi, 2013). Some magneto-
strictive materials such as Terfenol-D exhibit measurable magnetostrictive strains on the order
of microstrain (2000 · 10−6) (Chopra and Sirohi, 2013). Magnetostrictive materials are found
in the form of rods, thin films and powder (Chopra and Sirohi, 2013). These materials usually
are ready to assemble into devices without any processing (Chopra and Sirohi, 2013). Magne-
tostrictive materials are now being used for several applications such as active vibration and
noise control of systems, machine tools, servo-valves, hybrid motors, automotive brake systems,
micro-positioners, particulate-actuators and sensors (Chopra and Sirohi, 2013 quoted from Hunt,
1953; Goodfriend et al., 1994; Dapino et al., 1999).

Several researchers have used magnetostrictive materials in order to attenuate vibration. Pra-
dhan and Reddy (2004) suppressed natural vibration of laminated composite shell panels using
magnetostrictive actuating layers based on the first-order shear deformation shell theory. Kumar
et al. (2004) used a distributed magnetostrictive layer bonded to a plate to control vibration of
the plate based on a negative velocity feedback control approach. Pradhan (2005) applied the
Navier solution and the first-order shear deformation shell theory to suppress vibration of the
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functionally graded shells with embedded magnetostrictive layers. Oates and Smith (2008) desi-
gned a nonlinear control for attenuating structural vibrations via magnetostrictive transducers
operating in nonlinear and highly hysteretic operating regimes. Hong (2014) derived vibration
and a transient answer of rapid heating on the inner surface of functionally graded material
(FGM) circular cylindrical shells which had a magnetostrictive material in their outer layer ba-
sed on a generalized differential quadrature (GDQ) method. Zhang et al. (2015) investigated
active vibration damping of a cantilever laminated composite plate with giant magnetostrictive
material layers using a nonlinear and coupled constitutive model. Hong (2016) utilized GDQ me-
thod to derive computational results of three-layer cross-ply composite magnetostrictive shells
under sudden uniform heat persuaded vibration. Ghorbanpour Arani et al. (2017) presented a
feedback control system for studying the free vibration response of a rectangular plate made of
a magnetostrictive material. Trigonometric higher order shear deformation theory was used in
that study.

Conical shells are structures which have numerous applications in industry. Several resear-
chers have studied the vibration response of truncated conical shells with various techniques. Irie
et al. (1984) presented natural frequencies of a truncated conical shell with different boundary
conditions. Tong (1994) presented solutions in the form of power series to investigate free vibra-
tion of composite laminated conical shells including the transverse shear deformation and the
extension-bending coupling. Civalek (2006) used a discrete singular convolution (DSC) algorithm
to investigate free vibration of single isotropic and orthotropic conical shells based on Love’s first
approximation thin shell theory. Li et al. (2009) presented the solution for forced vibration of a
conical shell by means of the Rayleigh-Ritz method. Jin et al. (2014) derived a precise modified
Fourier series solution to investigate free vibration of truncated conical shells with general ela-
stic boundary conditions. Firouz-Abadi et al. (2014) utilized the Novozhilov theory in order to
study free vibration of moderately thick conical shells. Kamarian et al. (2016) determined the
free vibration solution of carbon nanotube-reinforced composite conical shells by using the GDQ
method. Bagheri et al. (2017) investigated free vibration of a shear deformable conical shell with
an intermediate ring support using the first order shear deformation shell theory. Shakouri and
Kouchakzadeh (2017) obtained natural frequencies of generally laminated conical and cylindri-
cal shells under arbitrary boundary conditions using a simple analytical method based on the
Donnell thin-walled shell theory. Xie et al. (2017) analyzed free and forced vibration of stepped
conical shells with general boundary conditions by means of an analytical method. Nasihatgozar
and Khalili (2019) obtained vibration and buckling responses of laminated sandwich truncated
conical shells with a compressible or incompressible core assuming curvature effects. Sofiyev et
al. (2017) investigated dynamic instability of functionally graded (FG) truncated conical shells
under dynamic axial load using first order shear deformayion theory. Sofiyev (2018) investiga-
ted free vibration of laminated orthotropic conical shells based on a modified first order shear
deformation theory. Sofiyev and Kuruoglu (2018) extracted excitation frequencies of parametric
vibration of laminated non-homogeneous orthotropic conical shells under axial load periodical-
ly varying with time based on the classical shell theory. Mehditabar et al. (2018) derived the
vibration response of an antisymmetric angle-ply laminated conical shell based on a transverse
shear deformation theory.

It can be concluded from literature that active vibration control of isotropic truncated conical
shells based on the first order shear deformation theory should be considered. Because of the
importance of damping of undesirable vibration of the conical shells, this paper investigates
the active vibration control of isotropic truncated conical shells with a pair of magnetostrictive
layers embedded into the host material under simply supported boundary conditions based on
the first order shear deformation theory. Hamilton’s principle is used for obtaining vibration
equations. Then, kinematics of the shell, which is described in the form of partial differential
equations, is converted to ordinary differential equations using the Ritz and modified Galerkin
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methods. The vibration responses of the shell are controlled using a velocity feedback control
law. The influences of bounding values of longitudinal and circumferential wave numbers on
the convergence of the responses are studied. The validation of the results is investigated by
comparison with the results published in literature and also finite element software results, and
very good agreement is observed. The effects of the control gain value, magnetostrictive layers
thickness, isotropic layer thickness, length and semi-vertex angle of the conical shell on the
vibration suppression characteristics are discussed in details.

2. Basic formulations

An isotropic truncated conical shell with length L, small edge radius R1, large edge radius R2
and semi-vertex angle α under simply supported boundary conditions is considered here. This
shell is embedded with two magnetostrictive layers on its inner and outer surfaces. The total
thickness of the shell is hT while isotropic and magnetostrictive layers thicknesses are denoted
by h and hm, respectively. The schematic of the considered conical shell is shown in Fig. 1. The
coordinate system x-θ-z with the origin point at the small edge on the mid-surface of the shell
is considered. The x-coordinate is assumed along the shell generator while θ and z demonstrate
the circumferential and thickness coordinates, respectively.

Fig. 1. Schematic of the conical shell with reference coordinates (Lam and Hua, 1997)

Considering the first order shear deformation shell theory (FSDT), the displacement field is
defined in the following form (Rao, 2007)

u = u0 + zψx v = v0 + zψθ w = w0 (2.1)

In Eq. (2.1), u, v and w demonsrate the displacements along x, θ and z coordinates for a
randomly selected point while u0, v0 and w0 refer to the shell middle surface displacements
along x, θ and z directions. In addition, ψx and ψθ illustrate the total angular rotations of the
normal to the mid-surface about θ and x axes, respectively. The strains of the shell are defined
as follows (Rao, 2007)

εx = ε
0
x + zkx εθ = ε

0
θ + zkθ εxθ = ε

0
xθ + zkxθ

εxz = ε
0
xz εθz = ε

0
θz

(2.2)

where (Rao, 2007)
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ε0x =
∂u0
∂x

ε0θ =
1

R(x)

∂v0
∂θ
+
u0 sinα

R(x)
+
w0 cosα

R(x)

ε0xθ =
∂v0
∂x
+
1

R(x)

∂u0
∂θ
−
v0 sinα

R(x)
ε0xz =

∂w0
∂x
+ ψx

ε0θz =
1

R(x)

∂w0
∂θ
−
v0 cosα

R(x)
+ ψθ kx =

∂ψx
∂x

kθ =
1

R(x)

(∂ψθ
∂θ
+ ψx sinα

)

kxθ =
∂ψθ
∂x
+
1

R(x)

∂ψx
∂θ
−
ψθ sinα

R(x)

(2.3)

The radius of the conical shell in any arbitrary point of its mid-surface is related to its position
along x coordinate as

R(x) = R1 + x sinα (2.4)

The stress-strain relations of the k-th layer which is made of simple isotropic or magnetostrictive
materials are defined as (Lee and Reddy, 2004)
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In the following, the superscript k which denotes the layers number is omitted for abbreviation.
The plane stress reduced stiffnesses are obtained in the following form (Reddy, 2004)

Q11 =
E

1− ν2
Q12 = Q21 =

νE

1− ν2
Q22 =

E

1− ν2

Q66 = G Q44 = G Q55 = G

(2.6)

The variables E, G and ν are Young’s moduli, shear moduli and Poisson’s ratio, respectively.
It should be mentioned that the values of e31 and e32 are zero for an isotropic material which
is not magnetostrictive. The in-plane force resultants, Nx, Nθ and Nxθ, the moment resultants,
Mx,Mθ andMxθ and transverse force resultants, Qx, Qθ are demonstrated in the following form
(Pradhan and Reddy, 2004)
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(2.7)

where Ks = 5/6 (Reddy, 2004) and Aij, Bij , Dij which are the laminate stiffness coefficients are
obtained in the following form (Reddy, 2004)

Aij =
N
∑

k=1

Q
(k)
ij (zk+1 − zk) (i, j = 1, 2) Bij =

1

2

N
∑

k=1

Q
(k)
ij (z

2
k+1 − z

2
k) (i, j = 1, 2)

Dij =
1

3

N
∑

k=1

Q
(k)
ij (z

3
k+1 − z

3
k) (i, j = 1, 2) Aii =

N
∑

k=1

Q
(k)
ii (zk+1 − zk) (i = 4, 5)

(2.8)
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In Eq. (2.5), H is referred to the intensity of magnetic field of the magnetostrictive layers. The
magnetic field is generated due to coil current I in the following form (Pradhan and Reddy,
2004;, Lee and Reddy, 2004)

H = kcI kc =
nc

√

b2c + 4r
2
c

(2.9)

where kc is the magnetic coil constant which is related to coil width bc, coil radius rc and the
number of the coil turns nc. In order to design the control law and actively control the system
vibration, the current I can be produced in relation with the velocities (u̇0 and ẇ0) in the
following form

I = −C(t)(u̇0 + ẇ0) +
Hb
kc

(2.10)

where C(t) is a control designing parameter and is considered to be constant in this study. In
addition, Hb is the magnetic field of the bias point. Bias point is selected to be the middle point
of the linear region of the strain versus magnetic field curve (Chapra and Sirohi, 2013). It should
be mentioned that the second section of equation (2.10) (Hb/kc) is static and does not come in
vibration equations. The control gain value ckc is obtained in the following form

ckc = kcC(t) (2.11)

It should be mentioned that in Eq. (2.7), the magnetostrictive stiffness resultants, A31, A32, B31
and B32 are obtained as (Pradhan and Reddy, 2004)

[A31, A32, B31, B32] =
N
∑

k=m1,m2,...

zk+1
∫

zk

ckc[e31, e32, ze31, ze32] dz (2.12)

3. Problem solution

3.1. Basic relations

In this paper, Hamilton’s principle is used to obtain vibration equations. Besides, in order to
show the reliability of all results, two method including the Ritz and modified Galerkin methods
are used for solving the problem. Hamilton’s principle for free vibration is defined as follows
(Rao, 2007)

∫

t

(δT − δUε) dt = 0 (3.1)

while δT and δUε are the virtual kinetic and strain energies which are calculated in the following
form (Rao, 2007)

δUε =

∫

x

∫

θ

(Nxδε
0
x +Nθδε

0
θ +Nxθδε

0
xθ +Mxδkx +Mθδkθ +Mxθδkxθ

+Qxδε
0
xz +Qθδε

0
θz)R(x) dθ dx

δT =

∫

θ

∫

x

[J1(u̇0δu̇0 + v̇0δv̇0 + ẇ0δẇ0) + 2J2(u̇0δψ̇x + δu̇0ψ̇x + v̇0δψ̇θ + δv̇0ψ̇θ)

+ J3(ψ̇xδψ̇x + ψ̇θδψ̇θ)]R(x) dx dθ

(3.2)
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while J1, J2 and J3 are mass moments of inertia which are calculated as (Qatu, 2004)

(J1, J2, J3) =
N
∑

k=1

zk+1
∫

zk

ρ(k)(1, z, z2) dz (3.3)

while ρ denotes the density of each layer. Hamilton’s principle leads to differential vibration
equations of the truncated conical shell via some simple mathematical operations

R(x)
∂Nx
∂x
+ (Nx −Nθ) sinα+

∂Nxθ
∂θ
− J1R(x)ü0 − J2R(x)ψ̈x = 0

Qθ cosα+R(x)
∂Nxθ
∂x
+ 2Nxθ sinα+

∂Nθ
∂θ
− J1v̈0R(x)− J2ψ̈θR(x) = 0

−Nθ cosα+
∂Qx
∂x

R(x) +Qx sinα+
∂Qθ
∂θ
− J1ẅ0R(x) = 0

R(x)
∂Mx
∂x
+ (Mx −Mθ) sinα+

∂Mxθ
∂θ
−QxR(x)− J2R(x)ü0 − J3R(x)ψ̈x = 0

R(x)
∂Mxθ
∂x
+ 2 sinαMxθ +

∂Mθ
∂θ
−QθR(x)− J2R(x)v̈0 − J3R(x)ψ̈θ = 0

(3.4)

In addition, the geometrical and natural boundary conditions are extracted from simplifica-
tion of the Hamilton principle. The geometric and natural boundary conditions are respectively
introduced in Eqs. (3.5) and (3.6) (Rao, 2007)

v0(0, θ, t) = 0 w0(0, θ, t) = 0 ψθ(0, θ, t) = 0
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(3.5)
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The following form of displacements and rotations could satisfy the geometrical boundary con-
ditions of the system
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(3.7)

while m and n express longitudinal and circumferential wave numbers, respectively. Besides, the
bounding values ofm and n are considered to beM andNT , respectively. The effects of bounding
values of wave numbers on the convergence of frequency factor responses are investigated in
Section 4.
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3.2. Ritz method

The Ritz method (Reddy, 2002, 2004) employes variational statements. The variational form
of strain and kinetic energies for free vibration can be obtained from Eqs. (3.2) in the following
form

δUε =

∫

x

∫

θ

[

Nx
∂δu0
∂x
+

Nθ
R(x)

(∂δv0
∂θ
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+
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(3.8)

Substitution of Eqs. (2.2), (2.3), (2.7), (2.9), (2.10) and (2.11) into Eqs. (3.8) and then substi-
tution of the obtained result into Eq. (3.1) leads to the following equation
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while Sij are differential operators defined as follows

S11 = A11R(x)
∂Up
∂x

∂

∂x
+A12

∂Up
∂x
sinα+A12Up sinα

∂

∂x
+
A22Up sin

2 α

R(x)
+

A66
R(x)

∂Up
∂θ

∂

∂θ

+ J1UpR(x)
∂2

∂t2
− ckc

(

A31
∂Up
∂x

R(x) +A32Up sinα
) ∂

∂t

S12 = A12
∂Up
∂x

∂

∂θ
+
A22Up sinα

R(x)

∂

∂θ
−A66

∂Up
∂θ

sinα

R(x)
+A66

∂Up
∂θ

∂

∂x

S13 = A12
∂Up
∂x
cosα+

A22Up sinα cosα

R(x)
− ckc

(

A31R(x)
∂Up
∂x
+A32Up sinα

) ∂

∂t

S14 = J2UpR(x)
∂2

∂t2
S15 = 0

S21 = A12
∂Vp
∂θ

∂

∂x
+A22

∂Vp
∂θ

sinα

R(x)
+A66

∂Vp
∂x

∂

∂θ
−
A66Vp sinα

R(x)

∂

∂θ
− ckcA32

∂Vp
∂θ

∂

∂t

S22 =
A22
R(x)

∂Vp
∂θ

∂

∂θ
−A66

∂Vp
∂x
sinα+A66

∂Vp
∂x

R(x)
∂

∂x
+
A66Vp sin

2 α

R(x)
−A66Vp sinα

∂

∂x

+
KsVpA44 cos

2 α

R(x)
+ J1VpR(x)

∂2

∂t2
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S23 =
A22 cosα

R(x)

∂Vp
∂θ
−
KsA44Vp cosα

R(x)

∂

∂θ
− ckcA32

∂Vp
∂θ

∂

∂t
S24 = 0

S25 = −KsA44Vp cosα+ J2VpR(x)
∂2

∂t2

S31 = A12Wp cosα
∂

∂x
+
A22Wp sinα cosα

R(x)
− ckcA32Wp cosα

∂

∂t

S32 =
A22Wp cosα

R(x)

∂

∂θ
−
KsA44 cosα

R(x)

∂Wp
∂θ

S33 =
A22Wp cos

2 α

R(x)
+KsA55R(x)

∂Wp
∂x

∂

∂x
+
KsA44
R(x)

∂Wp
∂θ

∂

∂θ
+ J1WpR(x)

∂2

∂t2

− ckc
(

A32Wp cosα
∂

∂t

)

S34 = KsA55
∂Wp
∂x

R(x) S35 = KsA44
∂Wp
∂θ

S41 = J2R(x)ψxp
∂2

∂t2
S42 = 0 S43 = KsA55ψxpR(x)

∂

∂x

S44 = D11R(x)
∂ψxp
∂x

∂

∂x
+D12

∂ψxp
∂x
sinα+D12ψxp sinα

∂

∂x
+
D22ψxp sin

2 α

R(x)

+
D66
R(x)

∂ψxp
∂θ

∂

∂θ
+KsA55ψxpR(x) + J3ψxpR(x)

∂2

∂t2

S45 = D12
∂ψxp
∂θ

∂

∂θ
+
D22ψxp sinα

R(x)

∂

∂θ
+D66

∂ψxp
∂θ

∂

∂x
−
D66 sinα

R(x)

∂ψxp
∂θ

S51 = 0 S52 = −KsA44ψθp cosα+ J2ψθpR(x)
∂2

∂t2
S53 = KsA44ψθp

∂

∂θ

S54 = D12
∂ψθp
∂θ

∂

∂x
+
D22 sinα

R(x)

∂ψθp
∂θ
+D66

∂ψθp
∂x

∂

∂θ
−
D66ψθp sinα

R(x)

∂

∂θ

S55 =
D22
R(x)

∂ψθp
∂θ

∂

∂θ
+D66R(x)

∂ψθp
∂x

∂

∂x
−D66

∂ψθp
∂x
sinα−D66ψθp sinα

∂

∂x

+
D66ψθp sin

2 α

R(x)
+KsA44ψθpR(x) + J3R(x)ψθp

∂2

∂t2

while Up, Vp, Wp, ψxp and ψθp are referred to the parts of virtual displacements which are
dependent to x and θ. The approximate function of this method is only necessary to satisfy
geometrical boundary conditions (Reddy, 2002, 2004). Therefore, substitution of Eq. (3.7) which
satisfies geometric boundary conditions into Eq. (3.9) leads to the following ordinary differential
equation

Mẍt(t) +Cẋt(t) +Kxt(t) = 0 (3.10)

3.3. Modified Galerkin method

The Galerkin method is (Rao, 2007) from weighted residual methods with trial solution
which is necessary to satisfy all of the boundary conditions. Differential equations of the system
which introduced in Eqs. (3.4) can be rewritten in the following form

L



























u0
v0
w0
ψx
ψθ



























=















L11 L12 L13 L14 L15
L21 L22 L23 L24 L25
L31 L32 L33 L34 L35
L41 L42 L43 L44 L45
L51 L52 L53 L54 L55









































u0
v0
w0
ψx
ψθ



























= 0 (3.11)
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The coefficients Lij which denote differential operators L of vibration equations are defined in
the following

L11 = A11R(x)
∂2

∂x2
−
A22 sin

2 α

R(x)
+

A66
R(x)

∂2

∂θ2
+A11 sinα

∂

∂x

+ ckc
(

−A31R(x)
∂2

∂x∂t
−A31 sinα

∂

∂t
+A32 sinα

∂

∂t

)

−R(x)J1
∂2

∂t2

L12 = A12
∂2

∂x∂θ
−
A22 sinα

R(x)

∂

∂θ
+A66

∂2

∂x∂θ
−
A66x sin

2 α

R(x)2
∂

∂θ
−
A66R1
R(x)2

∂

∂θ

L13 = A12 cosα
∂

∂x
−
A22 cosα sinα

R(x)
+ ckc

(

−A31R(x)
∂2

∂x∂t
−A31 sinα

∂

∂t
+A32 sinα

∂

∂t

)

L14 = −J2R(x) L15 = 0

L21 = A12
∂2

∂x∂θ
+
A22 sinα

R(x)

∂

∂θ
+
A66 sinα

R(x)

∂

∂θ
+A66

∂2

∂x∂θ
−A32ckc

∂2

∂θ∂t

L22 =
A22
R(x)

∂2

∂θ2
−
A66 sin

2 α

R(x)
+A66R(x)

∂2

∂x2
+A66 sinα

∂

∂x
−
KsA44 cos

2 α

R(x)
− J1R(x)

∂2

∂t2

L23 =
KsA44 cosα

R(x)

∂

∂θ
+
A22 cosα

R(x)

∂

∂θ
−A32ckc

∂2

∂θ∂t

L24 = 0 L25 = KsA44 cosα−R(x)J2
∂2

∂t2

L31 = −A12 cosα
∂

∂x
−
A22 cosα sinα

R(x)
+ ckc

(

A32 cosα
∂

∂t

)

L32 = −
A22 cosα

R(x)

∂

∂θ
−
KsA44 cosα

R(x)

∂

∂θ

L33 = −
A22 cos

2 α

R(x)
+KsA55 sinα

∂

∂x
+KsA55R(x)

∂2

∂x2
+
KsA44
R(x)

∂2

∂θ2

+ ckc
(

A32 cosα
∂

∂t

)

−R(x)J1
∂2

∂t2

L34 = KsA55R(x)
∂

∂x
+KsA55 sinα L35 = KsA44

∂

∂θ

L41 = −R(x)J2
∂2

∂t2
L42 = 0 L43 = −R1KsA55

∂

∂x
− x sinαKsA55

∂

∂x

L44 = D11R(x)
∂2

∂x2
+D11 sinα

∂

∂x
−
D22 sin

2 α

R(x)
+

D66
R(x)

∂2

∂θ2
−R(x)KsA55 − J3R(x)

∂2

∂t2

L45 = D12
∂2

∂x∂θ
−
D22 sinα

R(x)

∂

∂θ
+D66

∂2

∂x∂θ
−
D66 sinα

R(x)

∂

∂θ

L51 = 0 L52 = KsA44 cosα− J2R(x)
∂2

∂t2
L53 = −KsA44

∂

∂θ

L54 = D12
∂2

∂x∂θ
+
D22 sinα

R(x)

∂

∂θ
+D66

∂2

∂x∂θ
+
D66 sinα

R(x)

∂

∂θ

L55 =
D22
R(x)

∂2

∂θ2
+D66R(x)

∂2

∂x2
+D66 sinα

∂

∂x
−

D66
R(x)

sin2 α−KsA44R(x)− J3R(x)
∂2

∂t2

In addition, natural boundary conditions which introduced in equation (3.6) can be rewritten
in the following form
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P



























u0(0, θ, t)
v0(0, θ, t)
w0(0, θ, t)
ψx(0, θ, t)
ψθ(0, θ, t)



























= 0 P



























u0(L, θ, t)
v0(L, θ, t)
w0(L, θ, t)
ψx(L, θ, t)
ψθ(L, θ, t)



























= 0

P =















P11 P12 P13 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 P44 P45
0 0 0 0 0















P11 = −A11R(x)
∂

∂x
−A12 sinα+A31R(x)

∂

∂t
P12 = −A12

∂

∂θ

P13 = −A12 cosα+A31R(x)
∂

∂t

P44 = −D11R(x)
∂

∂x
−D12 sinα P45 = −D12

∂

∂θ

(3.12)

The modified Galerkin method formulation can be written as follows

L
∫

0

2π
∫

0

(

Lϕeλt
)

ϕ dθ dx−

2π
∫

0

(

Pϕeλt
)

ϕ

∣

∣

∣

∣

∣

L

0

dθ = 0 (3.13)

The Galerkin method trial function vector should satisfy both natural and geometrical boundary
conditions (Rao, 2007). The shape vector ϕ which introduced in Eq. (3.7) only satisfies the
geometrical boundary conditions. Therefore, the natural boundary conditions are added into
the Galerkin method formulation in order to compensate its imperfection. Finally, an ordinary
differential equation like Eq. (3.10) is extracted from Eq. (3.13).

3.4. Extraction of frequencies and displacement

In order to obtain the frequency and displacement of the shell, it is appropriate to write Eq.
(3.10) in the state space form as follows

ẏ(t) = Ay(t) (3.14)

while

y(t) = [xt(t), ẋt(t)]
T A =

[

0 I

−M−1K −M−1C

]

(3.15)

The two smallest eigenvalues of the matrix A are the fundamental responses which are shown
as: λ = −β ± iω. It should be mentioned that β and ω are respectively referred to damping
coefficient and frequency. The time response of the shell vibration is obtained in the following
form

y(t) = exp(At)y0 (3.16)

while y0 is the initial time response of the shell. Substitution of Eq. (3.16) into Eq. (3.7) and
then substitution of the result into Eq. (2.1) leads to the displacement of any point of the shell.
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4. Results and discussions

In this Section, the results of active vibration control for an isotropic truncated conical shell
embedded with two magnetostrictive layers is illustrated. It should be mentioned that in order
to show the correctness of this study, all of the results of this Section obtained using the two
Ritz and modified Galerkin methods. At first, the convergence and accuracy of the Ritz and
modified Galerkin methods results are presented. In order to obtain the results of convergence
and accuracy which are tabulated in Tables 1 to 3, the variable values are considered to be
L sinα/R2 = 0.25, h/R2 = 0.01 and ν = 0.3. The frequency factor which is a dimensionless
parameter is defined in the following form (Irie et al., 1984; Lam and Hua, 1999)

γ = ωR2

√

ρ(1− ν2)

E
(4.1)

Table 1 tabulates the effect of the longitudinal wave number bounding value M on the con-
vergence of the frequency factor obtained for mode shape with n = 9 for a conical shell with
α = 30◦. The longitudinal wave number bounding value M varies from 1 to 5. As can be seen
from Table 1, the convergence rate is great, and the convergence of the frequency factor is
obtained only for M = 2. Table 2 illustrates the effect of NT on the frequency factor for the
mode shape with n = 9 for a conical shell with α = 30◦. The variable NT varies from 9 to 12
while M is considered to be 3. It is obvious from Table 2 that the increase of NT never changes
the value of the frequency factor. This result may arise from the symmetric geometry of the
truncated conical shell.

Table 1. The effect of an increase in the longitudinal wave number M on the frequency factor

M Present Ritz Present modified Irie et al. Lam and Hua
(NT = 9) method Galerkin method (1984) (1999)

1 0.5634 0.5634
2 0.4884 0.4884
3 0.4884 0.4884 0.4892 0.4916
4 0.4879 0.4879
5 0.4879 0.4879

Table 2. The effect of an increase in the circumferential wave number NT on the convergence
of the frequency factor

NT Present Ritz Present modified Irie et al. Lam and Hua
(M = 3) method Galerkin method (1984) (1999)

9 0.4884 0.4884

0.4892 0.4916
10 0.4884 0.4884
11 0.4884 0.4884
12 0.4884 0.4884

Now in the next step, the accuracy of the Ritz and modified Galerkin methods results is
validated by comparing with literature results and also finite element software results for conical
shells with α = 30◦ and α = 45◦. It should be mentioned that in obtaining the results of Table 3,
the longitudinal wave number’s bounding value is considered to be 3 and 2 for Ritz and modified
Galerkin methods, respectively. It can be seen that there is good agreement between the results
of Ritz and modified Galerkin methods, finite element software and literature.
In the next step, the effect of using magnetostrictive layers on active vibration control of the

conical shells for the mode shape with n = 3 is investigated. An aluminum truncated conical shell
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Table 3. Comparison of the results of the Ritz and modified Galerkin methods with finite
element software and literature results

n

α = 30◦ α = 45◦

Ritz
method

Modified
[12] [17]

Finite
element

Ritz
method

Modified
[12] [17]

Finite
element

Galerkin Galerkin
method method

2 0.8316 0.8317 0.7910 0.8420 0.7954 0.7606 0.7606 0.6879 0.7655 0.7116

3 0.7331 0.7331 0.7284 0.7376 0.7220 0.7175 0.7175 0.6973 0.7212 0.7046

4 0.6340 0.6340 0.6352 0.6362 0.6288 0.6711 0.6711 0.6664 0.6739 0.6688

5 0.5513 0.5514 0.5531 0.5528 0.5477 0.6300 0.6300 0.6304 0.6323 0.6304

6 0.4937 0.4939 0.4949 0.4950 0.4902 0.6013 0.6014 0.6032 0.6035 0.6017

7 0.4647 0.4648 0.4653 0.4661 0.4605 0.5896 0.5897 0.5918 0.5921 0.5891

8 0.4639 0.4640 0.4645 0.4660 0.4590 0.5969 0.5970 0.5992 0.6001 0.5954

9 0.4884 0.4884 0.4892 0.4916 0.4824 0.6232 0.6233 0.6257 0.6273 0.6208

[12] – Irie et al. (1984), [17] – Lam and Hua (1999)

embedded with two magnetostrictive layers is considered here. The conical shell length, large
edge radius and semi-vertex angle are respectively 0.9m, 1m and 45◦. In addition, aluminum and
magnetostrictive layers thicknesses are considered to be 1mm and 3mm, respectively. Besides,
the initial speed, the bounding value of longitudinal wave number and control gain are assumed
to be 0.5m/s, 2 and 104, respectively. These mentioned values are used in the next part of the
paper unless mentioned otherwise. The magnetostrictive material which is used here is Terfenol-
-D. The values of Terfenol-D characteristics are considered as (Pradhan and Reddy, 2004; Lee
and Reddy, 2004): Em = 26.5GPa, dm = 1.67 · 10

−8m/A, νm = 0, ρm = 9250 kg/m
3.

Figures 2a and 2b reveal the effect of using active vibration control on the displacement in
the thickness direction versus time for a point on the shell with position (x, θ, z) = (0.5L, 0, 0)
using the Ritz and modified Galerkin methods respectively. When the vibration control is not
used (ckc = 0), the system vibration response is not damped. On the other hand, as the value
of control gain ckc increases, faster vibration suppression takes place.

Fig. 2. The effect of the control gain value on the displacement of the shell in the thickness direction:
(a) Ritz method, (b) modified Galerkin method

Figures 3a and 3b demonstrate, respectively, the effect of magnetostrictive layers thickness
on the damping coefficient and frequency of the conical shell. Figure 3a shows that the damping
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coefficient increases with the increase of magnetostrictive layers thickness, which leads to faster
vibration suppression. Figure 3b reveals that as the value of magnetostrictive layers thickness
increases, the value of frequency decreases.

Fig. 3. The influence of magnetostrictive layers thickness on: (a) damping coefficient, (b) frequency

Figures 4a and 4b depict the effect of magnetostrictive layers thickness on the displacement of
the shell in the thickness direction through the Ritz and modified Galerkin methods, respectively.
It is obvious from Figs. 4a and 4b that vibration suppression takes place faster for the conical
shells with greater values of the magnetostrictive layers thickness; therefore, Fig. 4 corroborates
the results of Fig. 3.

Fig. 4. Displacement of the truncated conical shell in the thickness direction for different values of
magnetostrictive layers thickness: (a) Ritz method, (b) modified Galerkin method

Figures 5a and 5b show, respectively, damping coefficient and frequency diagrams versus
isotropic layer thickness. One can conclude from Fig. 5a that the increase of isotropic layer
thickness leads to a decrease in the damping coefficient, which leads to slower vibration sup-
pression. It is obvious from Fig. 5b that as the thickness of isotropic layer increases, the value
of frequency becomes greater.
Figure 6a demonstrates the diagram of the damping coefficient versus length of the conical

shell. As the value of length increases, the damping coefficient gets smaller, which leads to slower
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Fig. 5. The effect of isotropic layer thickness on the: (a) damping coefficient, (b) frequency

Fig. 6. The effect of length of the truncated conical shell on the: (a) damping coefficient, (b) frequency

vibration attenuation. Figure 6b shows the frequency of the conical shell versus length of the
shell. This figure reveals that the conical shell with the largest length has the lowest frequency.
Table 4 shows the effect of semi-vertex angle on the vibration characteristics of the conical

shell. For the results of Table 4, the bounding value of longitudinal wave number is considered to
be 3 and 2 for Ritz and modified Galerkin methods, respectively. It is obvious from Table 4 that
the increase of semi-vertex angle leads to smaller values of the damping coefficient. Therefore,
vibration of the conical shell with the largest semi-vertex angle suppress with the slowest rate.
In addition, the increase of semi-vertex angle leads to smaller values for the frequency.

Table 4. Variations of the damping coefficient and frequency with the semi-vertex angle of the
conical shell

α
Ritz method Modified Galerkin method

β [rad/s] ω [rad/s] β [rad/s] ω [rad/s]

30◦ 93.8739 1005.3576 93.9962 1007.7142

45◦ 75.6201 871.9880 76.7118 887.0433

60◦ 54.6779 694.3874 57.3261 716.9652

75◦ 30.8688 413.2493 31.7141 441.3442



Vibration suppression of truncated conical shells... 971

5. Conclusion

In this paper, active vibration control of an isotropic truncated conical shell embedded with
magnetostrictive layers as actuators with simply supported boundary conditions on both sides is
investigated. Velocity feedback control formulation is applied to extract a closed loop control law.
The first order shear deformation theory and the Hamilton principle are used for extracting the
vibration equations. The Ritz and modified Galerkin methods are used to convert the kinematic
equations of the conical shell, which are partial differential equations, into ordinary differential
equations. The accuracy and correctness of the results of this study are proved by comparing
with the literature and finite element software results. The effects of several parameters including
the control gain value, thickness of the magnetostrictive layers, isotropic layer thickness, length
and semi-vertex angle of the truncated conical shell on the vibration suppression characteristics
are illustrated in details. The results show that as the control gain value or thickness of the
magnetostrictive layers increases, the system vibration response attenuates quicker. On the other
hand, the rate of vibration suppression decreases with the increase of the isotropic layer thickness,
length and semi-vertex angle.

References

1. Bagheri H., Kiani Y., Eslami M.R., 2017, Free vibration of conical shells with intermediate
ring support, Aerospace Science and Technology, 69, 321-332

2. Chopra I., Sirohi J., 2013, Smart Structures Theory, Chapter 6, Cambridge University Press

3. Civalek O., 2006, Free vibration analysis of composite conical shells using the discrete singular
convolution algorithm, Steel and Composite Structures, 6, 4, 353

4. Dapino M.J., Calkins F.T., Flatau A.B., 1999, Magnetostrictive devices, [In:] Wiley Encyc-
lopedia of Electrical and Electronics Engineering, J.G. Webster (Edit.), John Wiley and Sons, Inc.

5. Engdahl G., 2000, Handbook of Giant Magnetostrictive Materials, Chapter 2, Academic Press

6. Firouz-Abadi R.D., Rahmanian M., Amabili M., 2014, Free vibration of moderately thick
conical shells using a higher order shear deformable theory, Journal of Vibration and Acoustics,
136, 5, 051001

7. Ghorbanpour Arani A., Khoddami Maraghi Z., Khani Arani H., 2017, Vibration control of
magnetostrictive plate under multi-physical loads via trigonometric higher order shear deformation
theory, Journal of Vibration and Control, 23, 19, 3057-3070

8. Goodfriend M., Shoop K., Hansen T., 1994, Applications of magnetostrictive Terfenol-d,
Proceedings of Actuator 94, 4th International Conference on New Actuators, Bremen, Germany

9. Hong C.C., 2014, Rapid heating induced vibration of circular cylindrical shells with magnetostric-
tive functionally graded material, Archives of Civil and Mechanical Engineering, 14, 4, 710-720

10. Hong C.C., 2016, Rapid heating-induced vibration of composite magnetostrictive shells, Mecha-
nics of Advanced Materials and Structures, 23, 4, 415-422

11. Hunt F.V., 1953, Electroacoustics: The Analysis of Transduction and its Historical Background,
American Institute of Physics for the Acoustical Society of America

12. Irie T., Yamada G., Tanaka K., 1984, Natural frequencies of truncated conical shells, Journal
of Sound and Vibration, 92, 3, 447-453

13. Jin G., Ma X., Shi S., Ye T., Liu Z., 2014, A modified Fourier series solution for vibration
analysis of truncated conical shells with general boundary conditions, Applied Acoustics, 85, 82-96

14. Kamarian S., Salim M., Dimitri R., Tornabene F., 2016, Free vibration analysis of coni-
cal shells reinforced with agglomerated carbon nanotubes, International Journal of Mechanical
Sciences, 108, 157-165



972 S. Mohammadrezazadeh, A.A. Jafari

15. Kumar J.S., Ganesan N., Swarnamani S., Padmanabhan C., 2004, Active control of simply
supported plates with a magnetostrictive layer, Smart Materials and Structures, 13, 3, 487-492

16. Lam K.Y., Hua L., 1997, Vibration analysis of a rotating truncated circular conical shell, Inter-
national Journal of Solids and Structures, 34, 17, 2183-2197

17. Lam K.Y., Hua L., 1999, On free vibration of a rotating truncated circular orthotropic conical
shell, Composites, Part B: Engineering, 30, 2, 135-144

18. Lee S.J., Reddy J.N., 2004, Vibration suppression of laminated shell structures investigated
using higher order shear deformation theory, Smart Materials and Structures, 13, 5, 1176

19. Li F.M., Kishimoto K., Huang W.H., 2009, The calculations of natural frequencies and forced
vibration responses of conical shell using the Rayleigh-Ritz method, Mechanics Research Commu-
nications, 36, 5, 595-602

20. Mehditabar A., Rahimi G.H., Fard K.M., 2018, Vibrational responses of antisymmetric angle-
ply laminated conical shell by the methods of polynomial based differential quadrature and Fourier
expansion based differential quadrature, Applied Mathematics and Computation, 320, 580-595

21. Nasihatgozar M., Khalili S.M.R., 2019, Vibration and buckling analysis of laminated sandwich
conical shells using higher order shear deformation theory and differential quadrature method,
Journal of Sandwich Structures and Materials, 21, 4, 1445-1480, DOI: 10.1177/1099636217715806

22. Oates W.S., Smith R.C., 2008, Nonlinear optimal control techniques for vibration attenuation
using magnetostrictive actuators, Journal of Intelligent Material Systems and Structures, 19, 2,
193-209

23. Pradhan S.C., 2005, Vibration suppression of FGM shells using embedded magnetostrictive lay-
ers, International Journal of Solids and Structures, 42, 9-10, 2465-2488

24. Pradhan S.C., Reddy J.N., 2004, Vibration control of composite shells using embedded actu-
ating layers, Smart Materials and Structures, 13, 5, 1245-1257

25. Qatu M.S., 2004, Vibration of Laminated Shells and Plates, Elsevier

26. Rao S.S., 2007, Vibration of Continuous Systems, Chapter 15, John Wiley & Sons, Inc.

27. Reddy J.N., 2002, Energy Principles and Variational Methods in Applied Mechanics, Chapter 7,
John Wiley & Sons

28. Reddy J.N., 2004, Mechanics of Laminated Composite Plates and Shells: Theory and Analysis,
Chapters 3 and 8, CRC Press

29. Shakouri M., Kouchakzadeh M.A., 2017, Analytical solution for vibration of generally lami-
nated conical and cylindrical shells, International Journal of Mechanical Sciences, 131, 414-425

30. Sofiyev A.H., 2018, Application of the first order shear deformation theory to the solu-
tion of free vibration problem for laminated conical shells, Composite Structures, 188, DOI:
0.1016/j.compstruct.2018.01.016

31. Sofiyev A.H., Kuruoglu N., 2018, Determination of the excitation frequencies of laminated
orthotropic non-homogeneous conical shells, Composites, Part B: Engineering, 132, 151-160

32. Sofiyev A.H., Zerin Z., Allahverdiev B.P., Hui D., Turan F., Erdem H., 2017, The dy-
namic instability of FG orthotropic conical shells within the SDT, Steel and Composite Structures,
25, 5, 581-591

33. Tong L., 1994, Free vibration of laminated conical shells including transverse shear deformation,
International Journal of Solids and Structures, 31, 4, 443-456

34. Xie K., Chen M., Li Z., 2017, An analytic method for free and forced vibration analysis of
stepped conical shells with arbitrary boundary conditions, Thin-Walled Structures, 111, 126-137

35. Zhang Y., Zhou H., Zhou Y., 2015, Vibration suppression of cantilever laminated composite
plate with nonlinear giant magnetostrictive material layers, Acta Mechanica Solida Sinica, 28, 1,
50-61

Manuscript received August 3, 2018; accepted for print May 27, 2019


